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Abstract
We present a method that increases the accuracy of approximation of discrete sequences from fractal

interpolation functions. Instead of previously presented models which use a�ne mappings, we employ
polynomials of order d. Comparative results con�rm the improvements in the accuracy of the proposed
method.

1 Introduction
Fractal interpolation functions have drawn a great deal of attention in many scienti�c areas. They pose as
an alternative to traditional interpolation techniques, giving a broader set of interpolants. In fact, many
traditional interpolation techniques (splines, hermite polynomials et.c.) are included as special cases. Its
main di�erences from standard methods consist: a) in the presence of a self similarity in small scales, b) in the
constructive way (through iterations), that it is used to compute the interpolant, instead of the descriptive
one (usually a formula) provided by the classical methods and c) in the usage of some parameters, which are
usually called vertical scaling factors, that are strongly related with the fractal dimension of the interpolant.
They have been used to construct wavelets ([13], [14], [12]), to model one-dimensional signals ([18], [19],
[21]), in medical applications ([10], [20]), in remote sensing ([15]), in computer graphics ([17], [16], [22]), in
image compression ([7], [8], [9]) and several other applications.

This paper deals with the modelling of discrete sequences using fractal interpolation, a subject pioneered
by Mazel and Hayes in [18]. They used piecewise self-a�ne fractal interpolation functions and devised an
algorithm to compute the parameters of the model. Most applications dealing with approximation of rough
objects using fractal interpolation still use variants of their algorithm. However, their approach has several
drawbacks. The use of a�ne mappings for the construction of the fractal function that approximate the given
sequence makes the model rather in�exible. Still, there hasn't been proposed a method that overcomes this
obstacle. This is the objective of the present paper. We employ polynomials of order d and gain signi�cant
improvements.

The structure of the paper is as follows. In section 2 the main aspects of IFS and RIFS theory are outlined
and a little more detailed description of the concept of fractal interpolation is given. The methodology
of Mazel and Hayes in a broader context suitable for our purposes is also found there. Section 3 deals
with fractal interpolation functions of higher order. The procedure of the computation of the new model
parameters using convex optimization and some issues regarding the implementation of the method are given.
Finally we conclude with a comparison between the new method and the Mazel-Hayes approach.
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2 Background
2.1 IFS-RIFS
An Iterated Function System (or IFS for short) {X;w1−N} is de�ned as a pair consisting of a complete metric
space (X, ρ), together with a �nite set of continuous, contractive mappings wn : X → X, with respective
contraction factors |sn| < 1, for n = 1, 2, . . . , N (N ≥ 2). The attractor of an IFS is the unique set E, for
which E = limk→∞W k(A0) for every starting compact set A0, where

W (A) =
N⋃

n=1

wn(A) for all A ∈ H(X),

and H(X) is the complete metric space of all nonempty compact subsets of X with respect to the Hausdor�
metric h (for the de�nition of the Hausdor� metric, properties of 〈H(X), h〉 and examples of IFS, see [3] and
[2] among others). Since their introduction by Barnsley and Demko in the 80's (see [3]) they have been used
in numerous applications, due to their ability to construct highly complex structures with only a handful of
mappings. A notion closely related with IFS is that of the Recurrent Iterated Function System, or RIFS for
short, that allows the construction of even more complicated sets, by utilizing an irreducible row-stochastic
matrix P : (pn,m ∈ [0, 1] : n,m = 1, . . . , N), such that

N∑
m=1

pn,m = 1, n = 1, . . . , N. (1)

The concept of the RIFS resembles that of a discrete time Markov process. The matrix P contains the
transition probabilities for the process (i.e. pn,m gives the probability of transfer into state m given that the
process is in state n). Condition (1) says that whichever state the system is in (say n), a set of probabilities
is available that sum to one and describe the possible states to which the system transits at the next step.
We will return to these issues later, when we will use RIFS for interpolation (see algorithm 2). For the
construction of the attractor of the RIFS a little more e�ort is needed. The interested reader is addressed
to [2], [4], [5] and [6] for more details.

2.2 Fractal Interpolation
Barnsley in [1] was the �rst to introduce functions that are derived as attractors of IFSs or RIFSs (see [1], [4])
and interpolate given data points. Here we brie�y describe this construction based on RIFSs. The resulting
functions are called Recurrent Fractal Interpolation Functions (or RFIF for sort).

Let X = [0, 1]×R and ∆ = {(xn, yn) : n = 0, 1, . . . , N} be an interpolation set with N + 1 interpolation
points such that 0 = x0 < x1 < · · · < xN = 1. The interpolation points divide [0, 1] into N intervals In =
[xn−1, xn], n = 1, . . . , N , which we call domains. In addition, let Q = {(x̂j , ŷj) : m = 0, 1, . . . , M} be a subset
of ∆, such that 0 = x̂0 < x̂1 < · · · < x̂M = 1. We also assume that for every m = 0, 1, . . . , M − 1 there is at
least one n such that x̂m < xn < x̂m+1. Thus, the points of Q divide [0, 1] into M intervals Jm = [x̂m−1, x̂m],
m = 1, . . . , M , which we call regions. Finally, let J be a labelling map such that J : {1, 2, . . . , N} →
{1, 2, . . . ,M} with J(n) = m. Let xn−xn−1 = δn, n = 1, 2, . . . , N , and x̂m−x̂m−1 = ψm, m = 1, 2, . . . ,M . It
is evident that each region contains an integer number of domains. In the special case where the interpolation
points are equidistant (that is xn − xn−1 = δ, n = 1, 2, . . . , N , and x̂m − x̂m−1 = ψ, m = 1, 2, . . . , M), each
region contains exactly ψ/δ ∈ N domains.

We de�ne N mappings of the form:

wn

(
x
y

)
=

(
Ln(x)

Fn(x, y)

)
, for n = 1, 2, . . . , N, (2)

where Ln(x) = anx + bn and Fn(x, y) = sny + qn(x) (qn(x) is a continuous function). Each map wn is
constrained to map the endpoints of the region JJ(n) ≡ Jm to the endpoints of the domain In (see �gure 1).
That is,

wn

(
x̂m−1

ŷm−1

)
=

(
xn−1

yn−1

)
, wn

(
x̂m

ŷm

)
=

(
xn

yn

)
, for n = 1, 2, . . . , N. (3)
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Solving for an, bn we obtain an = (xn − xn−1)/(x̂m − x̂m−1) and bn = (x̂mxn−1 − x̂m−1xn)/(x̂m − x̂m−1).
Vertical segments are mapped to vertical segments scaled by the factor sn. The parameter sn is called
the vertical scaling factor of the map wn. It is easy to show that if |sn| < 1, then there is a metric d
equivalent to the Euclidean metric, such that wn is a contraction (i.e., there is ŝn : 0 ≤ ŝn < 1 such that
d (wn(~x), wn(~y)) ≤ ŝnd (~x, ~y), see [2]).

To conclude, we must de�ne the N ×N stochastic matrix P :

pnm =
{ 1

γn
, if In ⊆ JJ(m)

0, otherwise.
,

where γn is the number of positive entries of the line n, n = 1, 2, . . . , N . This means that pn,m is positive, if
and only if there is a transformation Lm, which maps the region containing the nth domain (i.e. In) to the
mth domain (i.e. Im). Usually, it is more e�cient to describe the stochastic matrix through the connection
vector V = (J(1), J(2), . . . , J(N)), that describes which region is mapped to each domain. Assuming that
we have chosen a set of interpolation points ∆, its subset Q, the vertical scaling factors sn, V , and some
arbitrary mappings that satisfy (3) we can construct the RFIF using the Deterministic Iterative Algorithm
(Algorithm 1) or the Random Iterative Algorithm (Algorithm 2).

Input: ∆, Q, {s1, . . . , sN}, V , {q1(x), . . . , qN (x)}, ν (the number of steps).
Output: fν

f0 = ∆ ;
for k = 1 to ν do

fk = ∅;
foreach domain In do

Find the corresponding region JV (n);
Denote RV (n) as the set containing the points of fk−1 that lie inside JV (n);
Map the points of RV (n) using the map wn, i.e. Dn = wn

(
RV (n)

)
;

fk = fk ∪Dn;
end

end
Algorithm 1: Deterministic Iterative Algorithm (DIA)

Input: ∆, Q, {s1, . . . , sN}, P , {q1(x), . . . , qN (x)}, ν (the number of iterations).
Output: f
Let (x(0), y(0)) ∈ ∆ be one of the interpolation points chosen at random;
If (x(0), y(0)) ∈ In, choose n0 = n as the initial state of the Markov process;
f = {(x(0), y(0))};
for k = 1 to ν do

Using the set of probabilities {pnk−1,1, . . . , pnk−1,N}, choose one of the mappings w1, . . . , wN (i.e. we
choose wn with probability pnk−1,n) and denote it as wnk . The process is now at state nk;
Let (x(k), y(k)) = wnk

(
(x(k−1), y(k−1))>

)
;

end
f = {(x(k), y(k)), k = 0, . . . , ν};

Algorithm 2: Random Iterative Algorithm (RIA)
As mentioned above, while the theory allows the use of arbitrary functions {q1(x), . . . , qN (x)} that satisfy

(3), only the linear case has been considered in most applications, i.e. qn(x) = cnx + dn, n = 1, . . . , N . In
this case (3) gives a linear system which can be easily solved to obtain:

cn =
yn − yn−1

x̂m − x̂m−1
− sn

ŷm − ŷm−1

x̂m − x̂m−1
,

dn =
x̂myn−1 − x̂m−1yn

x̂m − x̂m−1
− sn

x̂mŷm−1 − x̂m−1ŷm

x̂m − x̂m−1
,

for all n = 1, . . . , N . Thus, once the contraction factor sn for each map has been chosen, the remaining
parameters may be easily computed. This is the reason why the linear case is so popular. Mazel and Hayes
(see [18]) used this model (which they called piecewise self-a�ne fractal model) to approximate discrete
sequences. Their methodology is brie�y described in algorithm 3 in a more general setting. The computation
of the vertical scaling factor is done via unconstrained optimization of the mean square error or using some
geometric criteria ([18]). Both methods, however, may well lead to non acceptable values for the vertical
scaling factor (|sn| > 1). This is another drawback of their approach which we attempt to �x.
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Input: The discrete sequence {(ti, fi), i = 0, 1, . . . , N0}, δ, ψ such that ψ/δ ∈ N and the error tolerance E.
Output: A list of interpolation points Lp, a list of domain numbers Ld, a list of address La (describing which

region is mapped to each domain) and a list of vertical scaling factors Ls.
Store the points (t0, f0), (t0+δ, f0+δ), (t0+2δ, f0+2δ) e.t.c. to the interpolation points list Lp;
Store the numbers of all domains, de�ned by those points, to Ld;
foreach domain n do

foreach region m do
Compute the vertical scaling factor s associated with region m and domain n (this is done via some
geometric arguments or optimization;
if |sn| > 1 then

Continue to the next region;
end
Compute the rest of the parameters of the map wn (i.e. cn, dn);
Denote by Dn the points of the sequence that lie inside the domain n and by Rm the points of the
sequence that lie inside the region m;
Map Rm through wn, i.e. D̃n = wn(Rm);
Compute the SNR between Dn and D̃n;
if SNR ≥ E then

Continue to the next domain;
end

end
Find the maximum of the computed SNRs for the domain n;
if maximum SNR ≥ E then

Store the corresponding m to the addresses-list La;
Store the corresponding s to the vertical scaling factors list Ls;

end
if maximum SNR < E then

Split the domain Dn into ψ/δ smaller domains (adding the respective interpolation points to the list
Lp) and repeat the region-search for each one;

end
end

Algorithm 3: Mazel - Hayes Methodology
Note that Algorithms 1, 2 and 3 work even if ψ/δ 6∈ N. In the following, however, we limit our interest in

the case where there are numbers α, β ∈ N such that δ = αβ , ψ = αβ+1. In this case, for the reconstruction
step, the DIA will produce exactly the values of the discrete sequence. Otherwise, the algorithm will produce
more points than needed and we have to add an additional step to the procedure (for details see [18], [8],
[9]).

3 Fractal Interpolation Functions of higher order
3.1 De�nition
Although the method of Mazel and Hayes is quite popular and has been already implemented in many
applications it has some serious disadvantages. If we try to approximate a smooth signal, even as simple
as the points of a parabola, with the piecewise self a�ne model, we will obtain in the output much more
information than needed. This motivates us to wonder what will happen if, instead of a�ne functions the
qn's are polynomials of degree greater than one. Here we consider this case, i.e.

qn(x) =
d∑

k=0

an,kxk,

for n = 1, . . . , N , d ≥ 1. Considering sn and an,k for k = 2, . . . , d, as free parameters and taking into account
conditions (3) after some algebra we obtain:

an,1 =
yn − yn−1

x̂m − x̂m−1
−

∑d
k=2 an,k(x̂k

m − x̂k
m−1)

x̂m − x̂m−1
− sn

ŷm − ŷm−1

x̂m − x̂m−1
, (4)

an,0 =
yn−1x̂m − ynx̂m−1

x̂m − x̂m−1
−

∑d
k=2 an,k(x̂k

m−1x̂m − x̂k
mx̂m−1)

x̂m − x̂m−1
− sn

ŷm−1x̂m − ŷmx̂m−1

x̂m − x̂m−1
. (5)
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Figure 1: In the above �gure, the set ∆ consists of �ve interpolation points, while the set Q consists of three
points. The corresponding connection vector is V = (1, 2, 2, 1).

We will call the attractor of an RIFS of this form as RFIF of order d.

3.2 Modeling discrete sequences
In order to use RFIFs of order d to model discrete sequences, we need to devise a method for the e�cient com-
putation of the free parameters. To this end, we consider the discrete sequence {(ti, fi), i = 0, 1, . . . , N0} and
the sets Dn = {(ti(n), fi(n)), . . . , (ti(n)+δ, fi(n)+δ)} and Rm = {(t̂i(m), fî(m)), . . . , (t̂i(m)+ψ, fî(m)+ψ)}, contain-
ing the points of the signal that lie inside the n-th domain and m-th region respectively. Since we limit our
interest in the case where δ = αβ and ψ = αβ+1, we do not need all the points of Rm, but only those mapped
at the corresonding points of Dn, therefore we rede�ne Rm as Rm = {(t̂i(m)+α·l, fî(m)+α·l), l = 0, . . . , δ}.
Mapping the set Rm through a wn of the form (2) we obtain the set D̃n = wn(Rm) = {(ti(n)+l, f̃i(n)+l), l =
0, . . . , δ}, where f̃i(n)+l = snfî(m)+α·l + qn(t̂i(m)+α·l). After some lines of algebra we conclude that f̃i(n)+l =

An,m,l −
∑d

k=2 Bm,l,k · an,k − snΓm,l, where

An,m,l = A(2)
n,m + A(1)

n,mt̂i(m)+α·l, Bm,l,k = B
(2)
m,k + B

(1)
m,k t̂i(m)+α·l − tk

î(m)+α·l,

A(1)
n,m =

yn − yn−1

x̂m − x̂m−1
, A(2)

n,m =
yn−1x̂m − ynx̂m−1

x̂m − x̂m−1
,

B
(1)
m,k =

x̂k
m − x̂k

m−1

x̂m − x̂m−1
, B

(2)
m,k =

x̂k
m−1x̂m − x̂k

mx̂k
m−1

x̂m − x̂m−1
,

Γm,l = Γ(2)
m + Γ(1)

m t̂i(m)+α·l − fî(m)+α·l, Γ(1)
m =

ŷm − ŷm−1

x̂m − x̂m−1
,

Γ(2)
m =

ŷm−1x̂m − ŷmx̂m−1

x̂m − x̂m−1
,

for l = 0, . . . , δ, k = 2, . . . , d. We should choose the free parameters sn, an,k, k = 2, . . . , d such that the
square error

E(sn, an,2, . . . , an,d) =
δ∑

l=0

(
fi(n)+l − f̃i(n)+l

)2
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is minimized. To simplify the notation, we de�ne:

u =




sn

an,2

...
an,d


 , A =




Γm,0 Bm,0,2 . . . Bm,0,d

Γm,1 Bm,1,2 . . . Bm,1,d

...
...

...
Γm,δ Bm,δ,2 . . . Bm,δ,d


 b =




An,m,0 − fi(n)

An,m,1 − fi(n)+1

...
An,m,δ − fi(n)+δ


 .

therefore the error to be minimized is E(u) = ‖A · u − b‖22. Considering some positive regularization
coe�cients γ1, . . . , γd and taking into account the fact that |sn| < 1 we end up with the following convex
optimization problem:

minimize E(u) = ‖A · u− b‖22 +
d∑

k=1

γku2
k,

subject to u1 ≤ ε, (6)
u2 ≥ −ε,

where ε should be chosen a priori close to 1 (say 0.99). We can easily check that problem (6) has a unique
solution, which can easily be found. Before we give the solution we need the Lemma given below.

Lemma 3.1 Consider the function f : Rn → R : f(x) = x>Ax + b>x + c, where A is a strictly positive
matrix and the hyperplane a>x = ζ. The aforementioned hyperplane is a supporting hyperplane to the level
set Cη = {x : f(x) ≤ η} at the point (x0, f(x0) = η), where

x0 =
1
2
A−1(λa− b), λ =

ζ + a>A−1b

a>A−1a
.

Proof. The supporting hyperplane to the set Cη at a point (x0, η) is ∇f(x0)>x = ∇f(x0)>x0. Therefore,
since we want this hyperplane to be identi�ed with the hyperplane a>x = ζ, it is su�cient to �nd λ such
that 2Ax0 + b = λa and (2Ax0 + b)>x0 = λζ. Solving for x0 gives the result.

Now we focus our interest to problem (6). Since E(u) = u>
(
A>A + diag(γ)

)
u − 2b>Au + b>b

is a strictly convex di�erentiable function (where γ = (γ1, . . . , γd)>), it has a unique global minimum.
Taking the gradient equal to 0, we can easily found that the global minimum is attained at u(m) =(
A>A + diag(γ)

)−1
b>A. If |u(m)

1 | ≤ ε then the solution of problem (6) is u∗ = u(m). If u
(m)
1 > ε then

(using lemma 3.1)

u∗ =
1
2

(
A>A + diag(γ)

)−1

(λa + 2b>A),

where λ =
ε− 2a>

(
A>A + diag(γ)

)−1

b>A

a>A−1a
and a = (1, 0, . . . , 0)> ∈ Rd.

Finally, if u
(m)
1 < −ε we �nd similarly that

u∗ =
1
2

(
A>A + diag(γ)

)−1

(λa + 2b>A),

where λ =
−ε− 2a>

(
A>A + diag(γ)

)−1

b>A

a>A−1a
and a = (1, 0, . . . , 0)> ∈ Rd.

Note that in the case where Algorithm 3 partitioned a domain to several smaller ones due to inad-
equate region mapping as described in the algorithm, the above relations still hold if we consider α =
ψ/(domain-width). Moreover, it is easy to modify the procedure to handle the case where the interpolation
points are not equidistant.
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Figure 2: The histograms of the coe�cients an,2 (a) and an,3 (b) found by algorithm 3 with d = 3 applied
to a typical one dimensional signal. In (b) we can see some points that deviate signi�cantly from the mean
of the distribution (close to 3 or -3).

3.3 Implementation - Comparison
Using Algorithm 3, with the modi�cations in the computation of the map parameters which we described
above (i.e. we replace the steps of the vertical scaling factor computation and the cn, bn computation with
the minimization procedure) and removing the if statement regarding the value of the vertical scaling factor
(which is not needed since the minimization procedure ensures that |s| < 1) one should expect to get better
results than the Mazel-Hayes approach, since our methodology uses polynomials of degree higher than 1 and
minimizes the error analytically. In fact, it is evident that in the trivial case where we try to approximate
a sequence which has been derived as points of a piecewise self a�ne FIF, our approach will give the same
parameters up to order one, �lling the rest of the polynomial coe�cients (up to order d) with zeros. In this
section we demonstrate the e�ciency of the proposed model, comparing it with the approach of Mazel and
Hayes in the area of one-dimensional signal compression.

To achieve compression, we must come up with a quantization method for the model parameters. For
d = 1, Mazel and Hayes showed that a uniform quantizer with 26 or 28 levels for the quantization of the
vertical scaling factors gives satisfactory results. This is expected since we can see from examples that the
vertical scaling factors sn follow an almost uniform distribution. In the non-linear case a little more e�ort
is needed. The positive (likewise for the negative) values of an,k (i.e. the coe�cients of xk terms in the
model) now follows exponential distributions and there are some cases (luckily only a few) where the values
deviate from the mean signi�cantly (see �gure 2). To confront with this problem we add one more step
to Algorithm 3, so that the domains with model parameters that deviate from the mean signi�cantly (i.e.
the values greater than a cuto� threshold for the positive coe�cients or alternatively the values lower than
a cuto� threshold for the negative coe�cients) are feeded again to the algorithm. The cuto� threshold is
taken as the value greater than the 99% of the positive coe�cients (or alternatively the value lower than the
99% of the negative coe�cients). The algorithm searches again for a region that is "best-mapped" to the
respective domain. However, each time the minimization process yields model parameters that deviate from
the mean as explained above, the deviated parameters are set equal to the respective cuto� threshold and
the algorithm continues as before (i.e. the set D̃n is formed and the SNR is computed). Consequently, we
apply di�erent uniform quantizers for the model parameters of di�erent orders. In addition for higher order
coe�cients we need more quantizer levels since the model becomes more sensitive to errors.

Figure 3 shows the results of the methodology applied to two sound samples for various values of error
tolerance E (from 10 to 50). The �rst is a sample from a man singing a ballad and the second a sample from
an electric guitar. We can see in the �gure that there is a point which the model (for various values of d)
gets its maximum compression ratio and the decrease of error tolerance E doesn't contribute. This is due
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to the fact that as d increases, we need to store more coe�cients for each domain. There is a value for E
such that almost none of the domains get splitted. If we decrease E more, the algorithm �nds less suitable
regions for each domain, which results to a decrease of PSNR while the compression ratio remains the same,
since the same number of coe�cients is stored. For the quantization of the coe�cients we used 8 bits for the
vertical scaling factors sn of the Mazel-Hayes approach. For the higher order model with d = 2, we used 8
bits for the sn and 8 bits for the an,2 coe�cients. For the same model with d = 3, we used 8 bits for the sn

and 9 bits for the an,2 and an,3 coe�cients. Finally, when d = 4, we used 8 bits for the sn and 11 bits for
the an,2, an,3, an,4 coe�cients. For the regularization coe�cients we chose γ = (1, . . . , 1) and ε = 0.99. The
values of δ and ψ were chosen to be 32 and 64 respectively.

Acknowledgments. The author would like to thank professors Leoni Dalla and Sergios Theodoridis for
their continuous support.
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Figure 3: Two di�erent wav �les consisting of 32769 samples have been compressed with the Mazel-Hayes
methodology and the RFIF of order d methodology, for various values of d. The second sound sample (b) is
far more complex than the �rst (a).
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